2017江苏高考数学真题+参考答案

导语就高考来说,江苏走在了高考改革的前沿。就数学而言,江苏高考是没有文理科的。

  绝密★启用前

  2017年普通高等学校招生全国统一考试(江苏卷)

  数学I

  注意事项

  考生在答题前请认真阅读本注意事项及各题答题要求

  1. 本试卷共4页,包含非选择题(第1题 ~ 第20题,共20题).本卷满分为160分,考试时间为120分钟。考试结束后,请将本试卷和答题卡一并交回。

  2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

  3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。

  4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

  5.如需改动,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗

  一、填空题:本大题共14小题,每小题5分,共计70分,请把答案填写在答题卡相应位置上

  1.已知集合,,若则实数a的值为________

  2.已知复数z=(1+i)(1+2i),其中i是虚数单位,则z的模是__________

  3.某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100件,为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取 件

  4.右图是一个算法流程图,若输入x的值为,则输出的y的值是

  

  5.若tan,则tan=

  6.如图,在圆柱O1 O2 内有一个球O,该球与圆柱的上、下面及母线均相切。记圆柱O1 O2 的体积为V1 ,球O的体积为V2 ,则 的值是

  

  7.记函数 的定义域为D.在区间[-4,5]上随机取一个数x,则x D的概率是

  8.在平面直角坐标系xoy k ,双曲线 的右准线与它的两条渐近线分别交于点P,Q,其焦点是F1 , F2 ,则四边形F1 P F2 Q的面积是

  

  10.某公司一年购买某种货物600吨,每次购买x吨,运费为6万元/次,一年的总存储费用为4x万元,要使一年的总运费与总存储之和最小,则x的值是

  11.已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是 。

  12.如图,在同一个平面内,向量,,,的模分别为1,1,,与的夹角为,且tan=7,与的夹角为45°。若=m+n(m,nR),则m+n=

  

  13.在平面直角坐标系xOy中,A(-12,0),B(0,6),点P在圆O:x2+y2=50上,若·20,则点P的横坐标的取值范围是 .

  14.设f(x)是定义在R 且周期为1的函数,在区间上,其中集合D=,则方程f(x)-lgx=0的解的个数是 .

  15.(本小题满分14分)

  如图,在三棱锥A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,点E、F(E与A、D不重合)分别在棱AD,BD上,且EF⊥AD。

  求证:(1)EF∥平面ABC;

  (2)AD⊥AC

  

  16. (本小题满分14分)

  已知向量a=(cosx,sinx), QUOTE , QUOTE .

  (1)若a∥b,求x的值;

  (2)记 QUOTE ,求 QUOTE 的最大值和最小值以及对应的x的值

  17.(本小题满分14分)

  如图,在平面直角坐标系xOy中,椭圆的左、右焦点分别为F1,F2,离心率为,两准线之间的距离为8.点P在椭圆E上,且位于第一象限,过点F1作直线PF1的垂线l1,过点F2作直线PF2的垂线l2.

  (1)求椭圆E的标准方程;

  (2)若直线l1,l2的交点Q在椭圆E上,求点P的坐标.

  

  18. (本小题满分16分)

  如图,水平放置的正四棱柱形玻璃容器Ⅰ和正四棱台形玻璃容器Ⅱ的高均为32cm,容器Ⅰ的底面对角线AC的长为10cm,容器Ⅱ的两底面对角线EG,E1G1的长分别为14cm和62cm. 分别在容器Ⅰ和容器Ⅱ中注入水,水深均为12cm. 现有一根玻璃棒l,其长度为40cm.(容器厚度、玻璃棒粗细均忽略不计)

  (1)将l放在容器Ⅰ中,l的一端置于点A处,另一端置于侧棱CC1上,求l没入水中部分的长度;

  (2)将l放在容器Ⅱ中,l的一端置于点E处,另一端置于侧棱GG1上,求l没入水中部分的长度.

  

  19.(本小题满分16分)

  对于给定的正整数k,若数列lanl 满足

  =2kan对任意正整数n(n> k) 总成立,则称数列lanl 是“P(k)数列”.

  (1)证明:等差数列lanl是“P(3)数列”;

  (2)若数列lanl既是“P(2)数列”,又是“P(3)数列”,证明:lanl是等差数列.

  20.(本小题满分16分)

  已知函数有极值,且导函数的极值点是的零点。(极值点是指函数取极值时对应的自变量的值)

  (1) 求b关于a的函数关系式,并写出定义域;

  (2) 证明:b?>3a;

  (3) 若, 这两个函数的所有极值之和不小于,求a的取值范围。

  2017年普通高等学校招生全国统一考试(江苏卷)

  数学II(附加题)

  注意事项

  考生在答题前请认真阅读本注意事项及各题答题要求

  1. 本试卷共2页,均为非选择题(第21题 ~ 第23题)。本卷满分为40分,考试时间为30分钟。考试结束后,请将本试卷和答题卡一并交回。

  2. 答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置。

  3.请认真核对监考员在答题上所粘贴的条形码上的姓名、准考证号与本人是否相符。

  4.作答试题,必须用0.5毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效。

  5.如需改动,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗

  21.【选做题】本题包括A、B、C、D四小题,请选定其中两小题,并在相应的答题区域内作答。若多做,则按作答的前两小题评分。解答时应写出文字说明、证明过程或演算步骤。

  A.【选修4-1:几何证明选讲】(本小题满分10分)

  如图,AB为半圆O的直径,直线PC切半圆O于点C,AP⊥PC,P为垂足。

  

  求证:(1)∠PAC=∠CAB;

  (2)AC2 =AP·AB。

  B.[选修4-2:矩阵与变换](本小题满分10分)

  已知矩阵A= QUOTE ,B= QUOTE .

  (1) 求AB;

  若曲线C1; 在矩阵AB对应的变换作用下得到另一曲线C2 ,求C2的方程.

  C.[选修4-4:坐标系与参数方程](本小题满分10分)

  在平面坐标系中xOy中,已知直线l的参考方程为(t为参数),曲线C的

  

  

点击关注本地宝
返回首页

推荐排行

最新阅读


反馈 提问